Beilstein Journal of Nanotechnology (Oct 2017)

Ta2N3 nanocrystals grown in Al2O3 thin layers

  • Krešimir Salamon,
  • Maja Buljan,
  • Iva Šarić,
  • Mladen Petravić,
  • Sigrid Bernstorff

DOI
https://doi.org/10.3762/bjnano.8.215
Journal volume & issue
Vol. 8, no. 1
pp. 2162 – 2170

Abstract

Read online

Tantalum nitride nanoparticles (NPs) and cubic bixbyite-type Ta2N3 nanocrystals (NCs) were grown in (Ta–N+Al2O3)/Al2O3 periodic multilayers (MLs) after thermal treatment. The MLs were prepared by magnetron deposition at room temperature and characterized using grazing incidence small-angle X-ray scattering (GISAXS), X-ray reflectivity (XRR), grazing incidence X-ray diffraction (GIXRD), secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS). We found amorphous tantalum nitride NPs at 600–800 °C, with a high degree of ordering along the surface normal and short-range ordering within the layers containing tantalum (metallic layers). At an even higher annealing temperature of 900 °C the NPs crystallize in the rare and relatively unexplored Ta2N3 phase. However, the environment, morphology and spatial ordering of the NCs depend on the thickness of the metallic layers. For 12 nm thick metallic layers, the Ta2N3 NCs have an average diameter of 6 nm and they are confined and short-range ordered within the metallic layers. When the metallic layers are thinner, the NCs grow over 20 nm in diameter, show no spatial ordering, while the periodic structure of the ML was completely destroyed. The results presented here demonstrate a self-assembly process of tantalum nitride NPs, the morphological properties of which depend on the preparation conditions. This can be used as a generic procedure to realize highly tunable and designable optical properties of thin films containing transition-metal nitride nanocrystals.

Keywords