Viruses (Nov 2022)

Ivermectin Inhibits HBV Entry into the Nucleus by Suppressing KPNA2

  • Anna Nakanishi,
  • Hiroki Okumura,
  • Tadahiro Hashita,
  • Aya Yamashita,
  • Yuka Nishimura,
  • Chihiro Watanabe,
  • Sakina Kamimura,
  • Sanae Hayashi,
  • Shuko Murakami,
  • Kyoko Ito,
  • Takahiro Iwao,
  • Akari Ikeda,
  • Tomoyasu Hirose,
  • Toshiaki Sunazuka,
  • Yasuhito Tanaka,
  • Tamihide Matsunaga

DOI
https://doi.org/10.3390/v14112468
Journal volume & issue
Vol. 14, no. 11
p. 2468

Abstract

Read online

Hepatitis B virus (HBV) specifically infects human hepatocytes and increases the risks of cirrhosis and liver cancer. Currently, nucleic acid analogs are the main therapeutics for chronic hepatitis caused by HBV infection. Although nucleic acid analogs can eliminate HBV DNA by inhibiting HBV reverse transcriptase, they cannot lead to negative conversion of covalently closed circular DNA (cccDNA) and hepatitis B surface antigen (HBsAg). In this study, we revealed that the antifilarial drug ivermectin suppresses HBV production by a different mechanism from the nucleic acid analog entecavir or Na+ taurocholate co-transporting polypeptide-mediated entry inhibitor cyclosporin A. Ivermectin reduced the levels of several HBV markers, including HBsAg, in HBV-infected human hepatocellular carcinoma cells (HepG2-hNTCP-C4 cells) and humanized mouse hepatocytes (PXB hepatocytes). In addition, ivermectin significantly decreased the expression of HBV core protein and the nuclear transporter karyopherin α2 (KPNA2) in the nuclei of HepG2-hNTCP-C4 cells. Furthermore, depletion of KPNA1–6 suppressed the production of cccDNA. These results suggest that KPNA1–6 is involved in the nuclear import of HBV and that ivermectin suppresses the nuclear import of HBV by inhibiting KPNA2. This study demonstrates the potential of ivermectin as a novel treatment for hepatitis B.

Keywords