Minerals (May 2018)

Dual Geochemical Characteristics for the Basic Intrusions in the Yangtze Block, South China: New Evidence for the Breakup of Rodinia

  • Shengyuan Shu,
  • Xiaoyong Yang,
  • Lei Liu,
  • Wei Liu,
  • Jingya Cao,
  • Ergen Gao

DOI
https://doi.org/10.3390/min8060228
Journal volume & issue
Vol. 8, no. 6
p. 228

Abstract

Read online

Neoproterozoic intraplate magmatic rocks are widespread in the Yangtze Block (YZB). The contrasting interpretations on their petrogenesis and tectonic evolution induce stimulating discussions on the coeval tectonic setting, including the two competing models of rift-related (R-model) and arc-related (A-model). Their main evidence is dominantly from felsic magmatic rocks. In contrast, the less evolved basic rocks are more suitable for tectonic setting discrimination. Here we study the Longtanqing basic intrusions (LTQ) that are exposed to the central part of the N–S trending Kangdian rift in the western YZB, by detailed geochemical and geochronological investigations. Zircon U–Pb dating of the two diabases from LTQ yield identical ages within error of 777 ± 17 Ma and 780 ± 5.3 Ma, respectively. LTQ rocks are characterized by low SiO2 (49.83–50.71 wt %), high MgO (5.91–6.53 wt %), and Cr (140–150 ppm) contents, supporting the significant mantle affinity. They also display dual geochemical characteristics, including a series of features of continental within-plate basalts (WPB, Ti/V = 37.3–47.5, Zr/Y = 3.4–3.8, Ta/Hf = 0.19–0.23), and the typical signatures of island arc basalt (IAB), such as highly depleted in HFSE and HREE, and enriched in LREE and LILE. Most zircon εHf(t) values are positive (1.6–9.4) while the corresponding Hf depleted mantle model ages (TDM1) range from 1.0 Ga to 1.3 Ga. In combination with the occurrence of inherited zircons (991–1190 Ma), it is suggested that their sources are dominantly derived from the lithospheric mantle that was reconstructed in the late Mesoproterozoic. Thus, LTQ is mainly formed by partial melting of the enriched lithospheric mantle, and subsequently assimilated by a juvenile crust during upwelling. The melt compositions are controlled by different degrees of the crystal fractionation of the dominant clinopyroxene and plagioclase with minor amphibole under high fO2 conditions. Combined with previous geochronological and geochemical data in the YZB, our new results support the theory that the R-model can be responsible for the petrogenesis of Neoproterozoic magmatic rocks in South China.

Keywords