Materials (Dec 2022)

Facile Synthesis of Island-like ZrO<sub>2</sub>-VO<sub>2</sub> Composite Films with Enhanced Thermochromic Performance for Smart Windows

  • Jiahao Wu,
  • Zhe Wang,
  • Bin Li,
  • Baoshun Liu,
  • Xiujian Zhao,
  • Gen Tang,
  • Dawen Zeng,
  • Shouqin Tian

DOI
https://doi.org/10.3390/ma16010273
Journal volume & issue
Vol. 16, no. 1
p. 273

Abstract

Read online

VO2-based film, as a very promising thermochromic material for smart windows, has attracted extensive attention but has not been widely applied because it is difficult to simultaneously improve in terms of both solar-modulation efficiency (ΔTsol) and visible transmittance (Tlum) when made using the magnetron-sputtering method, and it has poor durability when made using the wet chemical method. Herein, island-like ZrO2-VO2 composite films with improved thermochromic performance (ΔTsol: 12.6%, Tlum: 45.0%) were created using a simple approach combining a dual magnetron-sputtering and acid-solution procedure. The film’s ΔTsol and Tlum values were increased initially and subsequently declined as the sputtering power of the ZrO2 target was raised from 30 W to 120 W. ΔTsol achieved its maximum of 12.6% at 60 W, and Tlum reached its maximum of 51.1% at 90 W. This is likely the result of the interaction of two opposing effects: Some VO2 nanocrystals in the composite film were isolated by a few ZrO2 grains, and some pores could utilize their surface-plasmon-resonance effect at high temperature to absorb some near-infrared light for an enhanced ΔTsol and Tlum. More ZrO2 grains means fewer VO2 grains in the composite film and increased film thickness, which also results in a decrease in ΔTsol and Tlum. As a result, this work may offer a facile strategy to prepare VO2-based films with high thermochromic performance and promote their application in smart windows.

Keywords