Applications of Modelling and Simulation (Jul 2022)

A Systems Theory Approach for Complex Energy Systems: A Case Study of Peer-to-Peer Energy Sharing

  • Mahmud S. Zango,
  • Ameer Mohammed,
  • Khalid K. Dandago,
  • Ahmed A. Shinkafi

Journal volume & issue
Vol. 6
pp. 72 – 85

Abstract

Read online

Due to the complexity of energy systems, they require robust control methods to ensure efficient operation. This is particularly true when reconfiguration is required to increase the system’s resilience. One such scenario is when Peer-to-Peer (P2P) energy trading is employed. This work uses systems theory to model and optimize complicated systems when several assets with heterogeneous characteristics are interconnected. This is achieved by adopting graph theory, propositional logic and state space analysis of dynamical systems. This approach simplifies P2P energy exchange and improves the system’s efficiency and resilience. The results obtained showed that the complexity of modelling P2P systems using structures like flowcharts increases with addition or introduction of new peers to the network and/or constraints on the network’s Energy Management System (EMS). The results obtained were validated by comparing the outcome of a P2P system modelled using E-variables and that modelled using structures like flowchart. We proved that using the proposed approach, it is easy to model such complicated systems. Since it is scalable, it can easily accommodate changes in the EMS (which manages how subsystems within a microgrid operate in order to ensure system efficiency) without significantly modifying the representation of the EMS.

Keywords