Applied Water Science (Mar 2018)
Investigation of the influence of lineaments, lineament intersections and geology on groundwater yield in the basement complex terrain of Ondo State, Southwestern Nigeria
Abstract
Abstract The influence of lineaments, lineament intersections and geology on the groundwater yield of the basement terrain of Ondo State was investigated using optical remote sensing data, Aster DEM, geology, and borehole yield data. Landsat-7 ETM+ and Aster DEM were processed to generate composite lineament map. The study area was traversed by five (5) main lineament populations trending N–S, NE–SW, E–W, ENE–WSW, NNW–SSE. Boreholes sited on lineament exhibited a yield range of between 0.8 and 1.28 l/s with an average yield of 1.04 l/s. Boreholes sited close to lineament gave groundwater yield values of between 0.5 and 1.28 l/s and an average yield of 1 l/s, while boreholes located outside lineament gave groundwater yield range of between 0.2 and 1.26 l/s with an average yield of 0.98 l/s. The investigation of the hydrogeological characteristics of the lithologies by superimposing the yield data showed average yield of 0.98 l/s for migmatite gneiss biotite granite undifferentiated (M), 1.01 l/s for porphyritic granite (OGp), 1.03 l/s for medium- to coarse-grained (OGe), 1.17 l/s for pelitic schist undifferentiated (Su), 1.24 l/s for quartz schist and quartzite (Eq), 1.12 l/s for older granite undifferentiated (OGu), 0.5 l/s for slightly migmatised medium-grained granite-gneiss (gg) and 1.23 l/s for fine-grained flaggy quartzite and schists (Sf). The study concluded that borehole data located on or near lineaments or at intersection of lineaments gave higher yields more than those located before lineaments or outside lineaments, while quartz schist and quartzite exhibited the highest average groundwater yield of all the lithological units.
Keywords