Alexandria Engineering Journal (Oct 2024)

Comprehensive investigation of microwave sintered AlCoCrFeNi/Ti-6Al-4V composite: Microstructural insights, mechanical properties, and tribological performance

  • Mahesh Mandapalli,
  • U.V. Akhil,
  • N. Radhika,
  • L. Rajeshkumar

Journal volume & issue
Vol. 104
pp. 246 – 260

Abstract

Read online

Ti-6Al-4 V is an extensively used and highly versatile titanium alloy. It is renowned for its lightweight-to-strength ratio, excellent biocompatibility, and corrosion resistance. The pursuit of advanced materials with enhanced mechanical strength, and wear resistance has led to the exploration of high entropy alloys (HEA) as particle reinforcements. This study combines Ti-6Al-4 V with AlCoCrFeNi HEA at different weight compositions (0 %, 2 %, 4 %, 6 %, 8 %) to create novel composites with tailored properties. The composites were subjected to density, microhardness, tensile, and pin-on-disc tests to evaluate mechanical and tribological properties. Microstructural analysis revealed that microwave sintering has enhanced densification and resulted in uniform dispersion of HEA particles within the Ti-6Al-4 V matrix. The XRD and EBSD analysis revealed the presence of BCC structure in the composite. 8 wt%-AlCoCrFeNi/Ti-6Al-4 V sample exhibited an impressive 81.66 % increase in microhardness and 21.23 % in yield strength, compared to the base sample. Furthermore, noteworthy reductions of 45 % in wear rate and 40 % in coefficient of friction (COF) when subjected to tribological analysis. The worn surface revealed the presence of oxide layer formation at elevated sliding velocity and distance which resulted in reduced wear rate.

Keywords