Heliyon (Apr 2024)
Automated, Point-of-Care mobile flow cytometry: Bringing the laboratory to the sample
Abstract
Background: Innate effector cells are very responsive to infectious and inflammatory cues found in damaged and inflamed tissues. Their activation is a potential target to assess the state of the immune system. Unfortunately, these cells are very susceptible for ex-vivo activation, hampering accurate interpretation of flow cytometry data. Whether a brief window exists before ex-vivo activation starts to occur is currently unknown. Aims: 1) This study extensively investigated ex-vivo activation of innate effector cells over time. 2) We tested the feasibility of applying a mobile, automated, flow cytometry laboratory for out-of-hospital Point-of-Care analyses to minimize ex-vivo activation bias. Methods: 1) Ex-vivo neutrophil, eosinophil and monocyte activation in a blood collection tube over time and the reactivity to a formyl-peptide was investigated in a healthy cohort. 2) To facilitate fast, out-of-hospital analysis, application of the mobile flow cytometry was tested by placing an automated flow cytometer into a van. The stability of the setup was assessed by repetitively measuring laser alignment and fluorescence verification beads. Findings: 1) Immediately after venipuncture activation marker expression on neutrophils, eosinophils and monocyte subsets started to change in a time-dependent manner. 2) The mobile flow cytometry laboratory travelled over 3000 km, performing measurements at 19 locations with a median single-person-set-up time of 14 min. The laser alignment and fluorescence were stable during all experiments. Conclusions: Accurate flow data of innate immune cells are only obtained when ex-vivo activation is kept to minimum. The use of a mobile, fast, automated, flow cytometry laboratory for out-of-hospital Point-of-Care analyses provides new investigational and diagnostic possibilities outside major hospital flow cytometry laboratories.