Physical Review Special Topics. Accelerators and Beams (Jul 2011)

Beam steering in superconducting quarter-wave resonators: An analytical approach

  • Alberto Facco,
  • Vladimir Zvyagintsev

DOI
https://doi.org/10.1103/PhysRevSTAB.14.070101
Journal volume & issue
Vol. 14, no. 7
p. 070101

Abstract

Read online Read online

Beam steering in superconducting quarter-wave resonators (QWRs), which is mainly caused by magnetic fields, has been pointed out in 2001 in an early work [A. Facco and V. Zviagintsev, in Proceedings of the Particle Accelerator Conference, Chicago, IL, 2001 (IEEE, New York, 2001), p. 1095], where an analytical formula describing it was proposed and the influence of cavity geometry was discussed. Since then, the importance of this effect was recognized and effective correction techniques have been found [P. N. Ostroumov and K. W. Shepard, Phys. Rev. ST Accel. Beams 4, 110101 (2001)PRABFM1098-440210.1103/PhysRevSTAB.4.110101]. This phenomenon was further studied in the following years, mainly with numerical methods. In this paper we intend to go back to the original approach and, using well established approximations, derive a simple analytical expression for QWR steering which includes correction methods and reproduces the data starting from a few calculable geometrical constants which characterize every cavity. This expression, of the type of the Panofski equation, can be a useful tool in the design of superconducting quarter-wave resonators and in the definition of their limits of application with different beams.