China Foundry (Mar 2015)

Microstructure and crystal growth direction of Al-Mg alloy

  • Ti-jun Chen,
  • Hai-yang Guo,
  • Xiang-wei Li

Journal volume & issue
Vol. 12, no. 2
pp. 129 – 135

Abstract

Read online

The microstructures and crystal growth directions of permanent mould casting and directionally solidified Al-Mg alloys with different Mg contents have been investigated. The results indicate that the effect of Mg content on microstructure is basically same for the alloys prepared by these two methods. The primary grains change from cellular crystals to developed columnar dendrites, and then to equiaxed dendrites as the Mg content is increased. Simultaneously, both the cellular or columnar grain region and the primary trunk spacing decrease. All of these changes are mainly attributed to the constitutional supercooling resulting from Mg element. Comparatively, the cellular or columnar crystals of the directionally solidified alloys are straighter and more parallel than those of the permanent mould casting alloys. These have straight or wavy grain boundaries, one of the most important microstructure characteristics of feathery grains. However, the transverse microstructure and growth direction reveal that they do not belong to feathery grains. The Mg seemingly can affect the crystal growth direction, but does not result in the formation of feathery grains under the conditions employed in the study.

Keywords