IEEE Access (Jan 2022)

Deep Reinforcement Learning Based Routing in IP Media Broadcast Networks: Feasibility and Performance

  • Pedro Amaral,
  • Diogo Simoes

DOI
https://doi.org/10.1109/ACCESS.2022.3182009
Journal volume & issue
Vol. 10
pp. 62459 – 62470

Abstract

Read online

The media broadcast industry has evolved from Serial Digital Interface (SDI) based infrastructures to IP networks. While IP based video broadcast is well established in the data plane, the use of IP networks to transport media flows still poses challenges in terms of resource management and orchestration. Software Defined Networking (SDN) based orchestration architectures have emerged in the industry that use SDN to route the media flows of a broadcast service across the provider IP network. Several approaches to multimedia flow routing in IP based SDN networks have been proposed in the context of streaming applications over the Internet. These range from model based linear optimization solutions that have high complexity to simple shortest path based routing with either Static Link Costs (SLC) or Dynamic Link Costs (DLC). More recently model-free optimization methods such as Deep Reinforcement Learning (DRL) have been proposed for routing and Traffic Engineering (TE) of multimedia flows in SDN networks. The media broadcast scenario however has specific requirements, with services like Master Control Room (MCR) operation and live broadcasting of events, and it has been rarely addressed in the literature. In this work we propose a DRL based routing method for this scenario and compare it to SLC and DLC algorithms based on Dijkstra shortest paths. This is, to our knowledge, the first work to follow this approach in the context of media broadcast services in IP infrastructures. The algorithm is designed considering the specifications and capabilities of one of the leading SDN orchestrators in the market and considers the more common Service Level Agreement (SLA) requirements in the industry. Three different DRL algorithms are implemented and compared and we evaluate them using a real service provider network topology. The results indicate that DRL based routing is applicable in real production scenarios and that it achieves considerable performance gains when compared to the SLC and DLC shortest path algorithms commonly used today.

Keywords