Tehnički Vjesnik (Jan 2024)

Optimization of Multi-temperature Joint Distribution Paths for Convenience Store Chains

  • Yuanyuan Zhang,
  • Yicheng Chen,
  • Peidong Yu,
  • Xianglong Li,
  • Yuhang Wang,
  • Junjing Zhang,
  • Jie Pang

DOI
https://doi.org/10.17559/TV-20230812000875
Journal volume & issue
Vol. 31, no. 5
pp. 1734 – 1746

Abstract

Read online

Purpose - Convenience stores are the main driving force of the small retail format in China. In order to meet customer demands, maintain product quality, reduce waste, and stay competitive in the fast-paced retail environment, convenience stores conduct daily food deliveries, with transportation costs accounting for the largest share of logistics expenses. Consequently, the daily operation costs of chain convenience stores increase. Therefore, the aim of this paper is to optimize the distribution paths of chain convenience stores with multiple distribution centers in order to reduce operational costs, reduce carbon dioxide emissions, etc. Design/methodology/approach - A mathematical model of the multi-temperature joint distribution problem with multiple distribution centers was constructed to minimize the total cost. In the model, six kinds of costs were considered. In addition, a two-stage algorithm was designed. The K-means algorithm was used to cluster match the demand points with the distribution centers, and the genetic algorithm was used to solve the routing problem of each distribution center. Subsequently, the costs of the multi-temperature joint distribution and multi-vehicle distribution were compared. Findings - The results showed that the optimization rate of total cost was 26.35%, the optimization rate of other costs was greater than 45%. Note that through case solving, the K-means algorithm was used to convert the single problem of multiple distribution centers into multiple problems of one distribution center. The multi-temperature joint distribution pattern was applied to the food distribution of chain convenience stores so that they could improve the delivery time and reduce the number of vehicles, carbon dioxide emissions, and total cost. Originality/value - Previous research on multi-temperature joint deliveries has predominantly focused on distribution from a single distribution center, overlooking the study of multi-distribution center scenarios. This article addresses this gap and explores the feasibility of applying a multi-temperature joint delivery service model to food distribution for chain convenience stores with multiple distribution centers.

Keywords