Mathematics (May 2023)
A Novel Many-Objective Sine–Cosine Algorithm (MaOSCA) for Engineering Applications
Abstract
In recent times, numerous innovative and specialized algorithms have emerged to tackle two and three multi-objective types of problems. However, their effectiveness on many-objective challenges remains uncertain. This paper introduces a new Many-objective Sine–Cosine Algorithm (MaOSCA), which employs a reference point mechanism and information feedback principle to achieve efficient, effective, productive, and robust performance. The MaOSCA algorithm’s capabilities are enhanced by incorporating multiple features that balance exploration and exploitation, direct the search towards promising areas, and prevent search stagnation. The MaOSCA’s performance is evaluated against popular algorithms such as the Non-dominated sorting genetic algorithm-III (NSGA-III), the Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D) integrated with Differential Evolution (MOEADDE), the Many-objective Particle Swarm Optimizer (MaOPSO), and the Many-objective JAYA Algorithm (MaOJAYA) across various test suites, including DTLZ1-DTLZ7 with 5, 9, and 15 objectives and car cab design, water resources management, car side impact, marine design, and 10-bar truss engineering design problems. The performance evaluation is carried out using various performance metrics. The MaOSCA demonstrates its ability to achieve well-converged and diversified solutions for most problems. The success of the MaOSCA can be attributed to the multiple features of the SCA optimizer integrated into the algorithm.
Keywords