Saudi Pharmaceutical Journal (Sep 2022)
Epigallocatechin gallate ameliorates tetrahydrochloride-induced liver toxicity in rats via inhibition of TGFβ / p-ERK/p-Smad1/2 signaling, antioxidant, anti-inflammatory activity
Abstract
Chronic liver disease is a worldwide health problem. Carbon tetra hydrochloride is an environmental toxin which is regarded as highly toxic and a potential human carcinogen. It can cause liver damage through the generation of metabolites and production of free radicals. Green tea contains catechins such as Epigallocatechin gallate which has been found to reduce the inflammation, oxidative stress, and fibrosis in experimental animal models. Hence, it represents a good source to prevent or ameliorate several chronic diseases. Silymarin is extracted from milk thistle seeds and has been found to be an effective agent to reduce the oxidative stress and free radical production and thereby exert protective effects in chronic liver conditions. The present study was planned to keep in view the above-mentioned facts. We included thirty rats in our study and divided them into five groups, each having six rats and the study continued for 8 weeks. Group I received normal saline; Group 2 received i.p. CCl4 injections; Group 3 received CCl4 i.p. injection and Epigallocatechin gallate (EGCG) oral gavage, Group 4 received CCl4 i.p. injection and silymarin by oral gavage; and Group 5 received CCl4 i.p. injection and combined EGCG + silymarin by oral gavage. The study found that in group 2, CCl4 induced significant elevation of ALT and MDA and reduced GSH thereby signifying increased oxidative stress. CCl4 also significantly increased inflammatory (TNFα, NFκB, IL1β, and TGFβ) as well as fibrotic markers (p-ERK and p-Smad1/2 protein expression). EGCG and silymarin significantly reversed the previously mentioned parameters either alone or in combination; however, the effect was more pronounced in case of EGCG. We conclude that EGCG and silymarin possess liver protective effects through their antioxidant, anti-inflammatory, and antifibrotic action.