Plant, Soil and Environment (Jun 2023)

Distribution of soil macroarthropods in differently using land parts of tropical rainforest Padang, Indonesia

  • Fenky Marsandi,
  • Hermansah,
  • Hidayatul Fajri,
  • Wawan Sujarwo

DOI
https://doi.org/10.17221/389/2022-PSE
Journal volume & issue
Vol. 69, no. 6
pp. 291 – 301

Abstract

Read online

Soil macroarthropods, as a component of the soil community, directly feel the impact of land use changes. Not only the density but understanding the soil macroarthropods distribution pattern will help in providing an insight into the quality of soil health. The sampling process was carried out using the pitfall trap methods on the forest, logged forest areas, mixed gardens, and monoculture gardens in the tropical rainforest of Bukit Pinang-Pinang Padang, Indonesia. The results showed that the forest as a natural habitat supported the density of soil macroarthropods among other land use types. The density in the forest, logged forest area, mixed garden, and monoculture garden sequentially is about 20.29, 13.18, 15.2 and 12.21 indv/m2. The presence frequency high value of soil macroarthropods was found in the forest, and for some soil macroarthropods, such as Hymenoptera, Diptera, and Araneits, the importance value increases when their habitat is disturbed. The fertile soil in intensive monoculture gardens does not support the individuals' total number, types, and density of soil macroarthropods. On the other side, the dominant soil macroarthropods prefer disturbed soil conditions and will decrease their presence frequency if chemical compounds are introduced into the soil. Land use change in the Bukit Pinang-Pinang tropical rainforest area causes changes in the distribution pattern of soil macroarthropods. The changing tendency of distribution patterns in fragmented habitats is due to nutrient availability, limited resources and land treatment. Habitat fragmentation affects not only the abundance and density of individuals and types of soil macroarthropods but also the distribution pattern, which not only threatens their existence and the environment but also has the potential to regenerate.

Keywords