Electronic Journal of Differential Equations (Nov 2020)
Asymptotic behavior of positive radial solutions to elliptic equations approaching critical growth
Abstract
We study the asymptotic behavior of radially symmetric solutions to the subcritical semilinear elliptic problem $$\displaylines{ -\Delta u = u^{\frac{N+2}{N-2}}/[\log(e+u)]^{\alpha}\quad \text{in } \Omega=B_R(0)\subset\mathbb{R}^N,\cr u>0,\quad \text{in } \Omega,\cr u=0,\quad \text{on } \partial \Omega, }$$ as $\alpha\to 0^+$. Using asymptotic estimates, we prove that there exists an explicitly defined constant L(N,R)>0, only depending on N and R, such that $$ \limsup_{\alpha\to0^+} \frac{\alpha u_\alpha (0)^2} {[\log(e+u_\alpha (0))]^{1+\frac{\alpha(N+2)}{2}}} \leq L(N,R) \le 2^*\liminf_{\alpha\to0^+}\frac{\alpha u_\alpha (0)^2} {[\log(e+u_\alpha (0))]^{\frac{\alpha(N-4)}2}}. $$