Anais da Academia Brasileira de Ciências (Jun 2016)

Relevance of Hydrodynamic Effects for the Calculation of Outer Surface Potential of Biological Membrane Using Electrophoretic Data

  • IZAN M. SILVA JUNIOR,
  • MARIA CLÍCIA S. CASTRO,
  • DILSON SILVA,
  • CÉLIA M. CORTEZ

DOI
https://doi.org/10.1590/0001-3765201620140530
Journal volume & issue
Vol. 88, no. 2
pp. 751 – 763

Abstract

Read online

ABSTRACT In this paper, we present the results of a study on the influence of hydrodynamic effects on the surface potentials of the erythrocyte membrane, comparing two different models formulated to simulate the electrophoretic movement of a biological cell: the classical Helmholtz-Smoluchowski model and a model presented by Hsu et al. (1996). This model considers hydrodynamic effects to describe the distribution of the fluid velocity. The electric potential equation was obtained from the non-linear Poisson-Boltzmann equation, considering the spatial distribution of electrical charges fixed in glycocalyx and cytoplasmic proteins, as well as electrolyte charges and ones fixed on the surfaces of lipidic bilayer. Our results show that the Helmholtz-Smoluchowski model is not able to reflect the real forces responsible to the electrophoretic behavior of cell, because it does not take account the hydrodynamic effects of glycocalyx. This charged network that covers cellular surface constitutes a complex physical system whose electromechanical characteristics cannot be neglected. Then, supporting the hypothesis of other authors, we suggest that, in electrophoretic motion analyses of cells, the classical model represents a limiting case of models that take into account hydrodynamic effects to describe the velocity distribution of fluid.

Keywords