BioMedical Engineering OnLine (Feb 2023)
Continuous relative phases of walking with an articulated passive ankle–foot prosthesis in individuals with a unilateral transfemoral and transtibial amputation: an explorative case–control study
Abstract
Abstract Background A mechanical ankle–foot prosthesis (Talaris Demonstrator) was developed to improve prosthetic gait in people with a lower-limb amputation. This study aims to evaluate the Talaris Demonstrator (TD) during level walking by mapping coordination patterns based on the sagittal continuous relative phase (CRP). Methods Individuals with a unilateral transtibial amputation, transfemoral amputation and able-bodied individuals completed 6 minutes of treadmill walking in consecutive blocks of 2 minutes at self-selected (SS) speed, 75% SS speed and 125% SS speed. Lower extremity kinematics were captured and hip–knee and knee–ankle CRPs were calculated. Statistical non-parametric mapping was applied and statistical significance was set at 0.05. Results The hip–knee CRP at 75% SS walking speed with the TD was larger in the amputated limb of participants with a transfemoral amputation compared to able-bodied individuals at the beginning and end of the gait cycle (p = 0.009). In people with a transtibial amputation, the knee–ankle CRP at SS and 125% SS walking speeds with the TD were smaller in the amputated limb at the beginning of the gait cycle compared to able-bodied individuals (p = 0.014 and p = 0.014, respectively). Additionally, no significant differences were found between both prostheses. However, visual interpretation indicates a potential advantage of the TD over the individual's current prosthesis. Conclusion This study provides lower-limb coordination patterns in people with a lower-limb amputation and reveals a possible beneficial effect of the TD over the individuals’ current prosthesis. Future research should include a well-sampled investigation of the adaptation process combined with the prolonged effects of the TD.
Keywords