Arabian Journal of Chemistry (Jan 2020)
Ditopic dithiocarbamate ligands for the production of trinuclear species
Abstract
Reactions of group 10 transition metals with the ditopic ligand dipicolyldithiocarbamate (DPDTC) were performed. Thus, 1:2 reactions of [Ni(CH3COO)2], [Pd(COD)Cl2] or [Pt(COD)Cl2] with DPDTC produced monomeric complexes of the type [M(κ2-SCS-DPDTC)2, M = Ni (1), Pd (2) or Pt (3)] with the dithiocarbamate ligand (DTC) coordinated in a typical chelate κ2-SCS fashion. Interestingly, the reaction of [NiCl2] with DPDTC, under similar conditions, afforded the organic compound 2-(pyridin-2-ylmethyl)imidazo[1,5-a]pyri-dine-3(2 H)-thione (4) as unique product. In order to prove the ditopic nature of the ligand DPDTC, complex [Pd(κ2-SCS-DPDTC)2] (2) was further reacted with [ZnCl2] in a 1:2 M ratio to yield the trinuclear complex [Cl2Zn(κ2-NN-DPDTC-SCS-κ2)Pd(κ2-SCS-DPDTC-NN-κ2)ZnCl2] (5). The molecular structures of all compounds were determinate by typical analytical techniques including the unequivocal determination of all structures by single crystal X-ray diffraction analysis. As expected, complexes 1–3 are isostructural, and the metal centres exhibiting slightly distorted square-planar geometries. While in 5, the trinuclear nature of the complex in confirmed exhibiting a nice combination of tetrahedral-square planar-tetrahedral geometries for the Zn-Pd-Zn centres respectively. Keywords: Dithiocarbamate, Metal-sulphur complexes, Trinuclear complexes, Ditopic ligands, Hetero-aromatic compound, Di-(2-picolyl)amine cyclization