Advances in Difference Equations (Jan 2021)
Exponential stability for delayed complex-valued neural networks with reaction-diffusion terms
Abstract
Abstract In this study, we investigate reaction-diffusion complex-valued neural networks with mixed delays. The mixed delays include both time-varying and infinite distributed delays. Criteria are derived to ensure the existence, uniqueness, and exponential stability of the equilibrium state of the addressed system on the basis of the M-matrix properties and homeomorphism mapping theories as well as the vector Lyapunov function method. The results demonstrate the positive effect of reaction-diffusion on the stability, which further improves the existing conditions. Finally, the analysis of several examples is compared to the present results to verify the correctness and reduced conservatism of the primary results.
Keywords