Axioms (Apr 2023)
Measure-Based Extension of Continuous Functions and <i>p</i>-Average-Slope-Minimizing Regression
Abstract
This work is inspired by some recent developments on the extension of Lipschitz real functions based on the minimization of the maximum value of the slopes of a reference set for this function. We propose a new method in which an integral p–average is optimized instead of its maximum value. We show that this is a particular case of a more general theoretical approach studied here, provided by measure-valued representations of the metric spaces involved, and a duality formula. For p=2, explicit formulas are proved, which are also shown to be a particular case of a more general class of measure-based extensions, which we call ellipsoidal measure extensions. The Lipschitz-type boundedness properties of such extensions are shown. Examples and concrete applications are also given.
Keywords