Symmetry (Oct 2022)
The Fractional Hilbert Transform of Generalized Functions
Abstract
The fractional Hilbert transform, a generalization of the Hilbert transform, has been extensively studied in the literature because of its widespread application in optics, engineering, and signal processing. In the present work, we expand the fractional Hilbert transform that displays an odd symmetry to a space of generalized functions known as Boehmians. Moreover, we introduce a new fractional convolutional operator for the fractional Hilbert transform to prove a convolutional theorem similar to the classical Hilbert transform, and also to extend the fractional Hilbert transform to Boehmians. We also produce a suitable Boehmian space on which the fractional Hilbert transform exists. Further, we investigate the convergence of the fractional Hilbert transform for the class of Boehmians and discuss the continuity of the extended fractional Hilbert transform.
Keywords