Biology Open (Oct 2014)

In vitro co-culture systems for studying molecular basis of cellular interaction between Aire-expressing medullary thymic epithelial cells and fresh thymocytes

  • Yoshitaka Yamaguchi,
  • Jun Kudoh,
  • Tetsuhiko Yoshida,
  • Nobuyoshi Shimizu

DOI
https://doi.org/10.1242/bio.201410173
Journal volume & issue
Vol. 3, no. 11
pp. 1071 – 1082

Abstract

Read online

We previously established three mouse cell lines (Aire+TEC1, Aire+TEC2 and Aire+DC) from the medullary thymic epithelial cells (mTECs) and dendritic cells (mDCs). These cells constitutively expressed “autoimmune regulator (Aire) gene” and they exhibited various features of self antigen-presenting cells (self-APCs) present in the thymic medullary region. Here, we confirmed our previous observation that Aire+ thymic epithelial cells adhere to fresh thymocytes and kill them by inducing apoptosis, thus potentially reproducing in vitro some aspects of the negative selection of T cells in vivo. In this system, a single Aire+ cell appeared able to kill ∼30 thymocytes within 24 hrs. Moreover, we observed that ectopic expression of peripheral tissue-specific antigens (TSAs), and expression of several surface markers involved in mTEC development, increased as Aire+ cell density increases toward confluency. Thus, these Aire+ cells appear to behave like differentiating mTECs as if they pass through the developmental stages from intermediate state toward mature state. Surprisingly, an in vitro co-culture system consisting of Aire+ cells and fractionated sub-populations of fresh thymocytes implied the possible existence of two distinct subtypes of thymocytes (named as CD4+ killer and CD4− rescuer) that may determine the fate (dead or alive) of the differentiating Aire+mTECs. Thus, our in vitro co-culture system appears to mimic a part of “in vivo thymic crosstalk”.

Keywords