Journal of Integrative Agriculture (Feb 2012)
Homopteran Vector Biomarkers for Efficient Circulative Plant Virus Transmission are Conserved in Multiple Aphid Species and the Whitefly Bemisia tabaci
Abstract
Plant viruses in the families Luteoviridae and Geminiviridae are phloem restricted and are transmitted in a persistent, circulative manner by homopteran insects. Using fluorescence 2-D difference gel electrophoresis to compare the proteomes of F2 genotypes of Schizaphis graminum segregating for virus transmission ability, we recently discovered a panel of protein biomarkers that predict vector competency. Here we used aphid and whitefly nucleotide and expressed sequence tag database mining to test whether these biomarkers are conserved in other homopteran insects. S. graminum gene homologs that shared a high degree of predicted amino acid identity were discovered in two other aphid species and in the whitefly Bemisia tabaci. Selected reaction monitoring mass spectrometry was used to validate the expression of these biomarkers proteins in multiple aphid vector species. The conservation of these proteins in multiple insect taxa that transmit plant viruses along the circulative transmission pathway creates the opportunity to use these biomarkers to rapidly identify insect populations that are the most efficient vectors and allow them to be targeted for control prior to the spread of virus within a crop.