Scientific Reports (May 2024)
Xanthine oxidoreductase inhibition ameliorates high glucose-induced glomerular endothelial injury by activating AMPK through the purine salvage pathway
Abstract
Abstract Xanthine oxidoreductase (XOR) contributes to reactive oxygen species production. We investigated the cytoprotective mechanisms of XOR inhibition against high glucose (HG)-induced glomerular endothelial injury, which involves activation of the AMP-activated protein kinase (AMPK). Human glomerular endothelial cells (GECs) exposed to HG were subjected to febuxostat treatment for 48 h and the expressions of AMPK and its associated signaling pathways were evaluated. HG-treated GECs were increased xanthine oxidase/xanthine dehydrogenase levels and decreased intracellular AMP/ATP ratio, and these effects were reversed by febuxostat treatment. Febuxostat enhanced the phosphorylation of AMPK, the activation of peroxisome proliferator-activated receptor (PPAR)-gamma coactivator (PGC)-1α and PPAR-α and suppressed the phosphorylation of forkhead box O (FoxO)3a in HG-treated GECs. Febuxostat also decreased nicotinamide adenine dinucleotide phosphate oxidase (Nox)1, Nox2, and Nox4 expressions; enhanced superoxide dismutase activity; and decreased malondialdehyde levels in HG-treated GECs. The knockdown of AMPK inhibited PGC-1α–FoxO3a signaling and negated the antioxidant effects of febuxostat in HG-treated GECs. Despite febuxostat administration, the knockdown of hypoxanthine phosphoribosyl transferase 1 (HPRT1) also inhibited AMPK–PGC-1α–FoxO3a in HG-treated GECs. XOR inhibition alleviates oxidative stress by activating AMPK–PGC-1α–FoxO3a signaling through the HPRT1-dependent purine salvage pathway in GECs exposed to HG conditions.
Keywords