Remote Sensing (Jul 2021)

Real-Time Calibration and Monitoring of Radar Reflectivity on Nationwide Dual-Polarization Weather Radar Network

  • Jeong-Eun Lee,
  • Soohyun Kwon,
  • Sung-Hwa Jung

DOI
https://doi.org/10.3390/rs13152936
Journal volume & issue
Vol. 13, no. 15
p. 2936

Abstract

Read online

Monitoring calibration bias in reflectivity (ZH) in an operational S-band dual-polarization weather radar is the primary requisite for monitoring and prediction (nowcasting) of severe weather and routine weather forecasting using a weather radar network. For this purpose, we combined methods based on self-consistency (SC), ground clutter (GC) monitoring, and intercomparison to monitor the ZH in real time by complementing the limitations of each method. The absolute calibration bias can be calculated based on the SC between dual-polarimetric observations. Unfortunately, because SC is valid for rain echoes, it is impossible to monitor reflectivity during the non-precipitation period. GC monitoring is an alternative method for monitoring changes in calibration bias regardless of weather conditions. The statistics of GC ZH near radar depend on the changes in radar system status, such as antenna pointing and calibration bias. The change in GC ZH relative to the baseline was defined as the relative calibration adjustment (RCA). The calibration bias was estimated from the change in RCA, which was similar to that estimated from the SC. The ZH in the overlapping volume of adjacent radars was compared to verify the homogeneity of ZH over the radar network after applying the calibration bias estimated from the SC. The mean bias between two radars was approximately 0.0 dB after correcting calibration bias. We can conclude that the combined method makes it possible to use radar measurements, which are immune to calibration bias, and to diagnose malfunctioning radar systems as soon as possible.

Keywords