Chemosensors (Sep 2022)

Extracellular pH Monitoring of Live Single Cells in Microdroplets Using Dual-Labelled Fluorinated Silica Nanoparticles and Time-Domain Dual Lifetime Referencing

  • Xuyan Lin,
  • Wenting Qiu,
  • Gianmarco Domenico Suarez,
  • Stefan Nagl

DOI
https://doi.org/10.3390/chemosensors10100379
Journal volume & issue
Vol. 10, no. 10
p. 379

Abstract

Read online

Fluorinated silica nanoparticles doped with Ruthenium-tris-1,10-phenanthroline dichloride on the inside and covalently conjugated with perfluorooctyltriethoxysilane and fluorescein isothiocyanate on the outside were developed and served several functions; the fluorination of the particles served to stabilize droplets in a microfluidic system at their interface to the continuous phase for single-cell experiments, and the two dyes provided for intrinsically referenced pH readout according to the time-domain dual lifetime referencing scheme. Apart from eliminating the droplet-to-droplet transport, these nanoparticles at the interface of the droplets generated rigid substrates that were suitable for the proliferation of adherent cells in the droplets without additional matrices. Cancer and non-cancer cell lines with culture media were allowed to proliferate in the droplets and the extracellular pH was monitored. These nanoparticles used in a microdroplet system could measure the pH of the extracellular microenvironment of single cells and provide support for the growth of cells in droplets of around 50 µm diameter. The pHe showed 6.84 ± 0.04 and 6.81 ± 0.04 for cancer cells (MCF-7 and A549, respectively) and 7.36 ± 0.03 for healthy cells (HUVEC), after a 10-h incubation, which can be potentially applied in distinguishing tumor from non-tumor cells. Capable of assisting cell culture and pH sensing in droplet microfluidic systems, the dye-conjugated fluorinated nanoparticles described in this work offer possibilities in a variety of biochemical or environmental analytical applications.

Keywords