Sensors (May 2024)

Design and Characterisation of a Read-Out System for Wireless Monitoring of a Novel Implantable Sensor for Abdominal Aortic Aneurysm Monitoring

  • Nuno P. Silva,
  • Adnan Elahi,
  • Eoghan Dunne,
  • Martin O’Halloran,
  • Bilal Amin

DOI
https://doi.org/10.3390/s24103195
Journal volume & issue
Vol. 24, no. 10
p. 3195

Abstract

Read online

Abdominal aortic aneurysm (AAA) is a dilation of the aorta artery larger than its normal diameter (>3 cm). Endovascular aneurysm repair (EVAR) is a minimally invasive treatment option that involves the placement of a graft in the aneurysmal portion of the aorta artery. This treatment requires multiple follow-ups with medical imaging, which is expensive, time-consuming, and resource-demanding for healthcare systems. An alternative solution is the use of wireless implantable sensors (WIMSs) to monitor the growth of the aneurysm. A WIMS capable of monitoring aneurysm size longitudinally could serve as an alternative monitoring approach for post-EVAR patients. This study has developed and characterised a three-coil inductive read-out system to detect variations in the resonance frequency of the novel Z-shaped WIMS implanted within the AAA sac. Specifically, the spacing between the transmitter and the repeater inductors was optimised to maximise the detection of the sensor by the transmitter inductor. Moreover, an experimental evaluation was also performed for different orientations of the transmitter coil with reference to the WIMS. Finally, the FDA-approved material nitinol was used to develop the WIMS, the transmitter, and repeater inductors as a proof of concept for further studies. The findings of the characterisation from the air medium suggest that the read-out system can detect the WIMS up to 5 cm, regardless of the orientation of the Z-shape WIMS, with the detection range increasing as the orientation approaches 0°. This study provides sufficient evidence that the proposed WIMS and the read-out system can be used for AAA expansion over time.

Keywords