Drones (Jun 2024)
Finite-Time Adaptive Quantized Control for Quadrotor Aerial Vehicle with Full States Constraints and Validation on QDrone Experimental Platform
Abstract
The issue of finite-time stability has garnered significant attention in the control systems of quadrotor aerial vehicles. However, existing techniques for achieving finite-time control often fail to consider the system’s state constraint characteristics and rarely address input quantization issues, thereby limiting their practical applicability. To address these problems, this paper proposes a finite-time adaptive neural network tracking control scheme based on a novel barrier Lyapunov function for the quadrotor unmanned aerial vehicle (UAV) system. Firstly, an adjustable boundary for the barrier Lyapunov function is introduced in the control system of a quadrotor UAV, enabling convergence of all states within finite-time constraints during trajectory tracking. Subsequently, a filter compensation signal is incorporated into the recursive design process of the controller to mitigate errors caused by filtering. Finally, a smoothing intermediate function is employed to alleviate the impact of input quantization on the quadrotor system. Experimental validation is conducted on the Quanser QDrone experimental platform to demonstrate the efficacy of the proposed control scheme.
Keywords