Journal for ImmunoTherapy of Cancer (May 2023)

Macrophage-inherited exosome excise tumor immunosuppression to expedite immune-activated ferroptosis

  • Yan Liu,
  • Junjie Liu,
  • Qin Wang,
  • Kun Zhang,
  • Chunyan Zhu,
  • Duo Wang,
  • Guanhua Qiu,
  • Xiaoqi Zhu,
  • Chao Fang

DOI
https://doi.org/10.1136/jitc-2022-006516
Journal volume & issue
Vol. 11, no. 5

Abstract

Read online

Background Immunosuppressive tumor microenvironment (ITM) remains an obstacle that jeopardizes clinical immunotherapy.Methods To address this concern, we have engineered an exosome inherited from M1-pheototype macrophages, which thereby retain functions and ingredients of the parent M1-phenotype macrophages. The delivered RSL3 that serves as a common ferroptosis inducer can reduce the levels of ferroptosis hallmarkers (eg, glutathione and glutathione peroxidase 4), break the redox homeostasis to magnify oxidative stress accumulation, promote the expression of ferroptosis-related proteins, and induce robust ferroptosis of tumor cells, accompanied with which systematic immune response activation can bbe realized. M1 macrophage-derived exosomes can inherit more functions and genetic substances than nanovesicles since nanovesicles inevitably suffer from substance and function loss caused by extrusion-arised structural damage.Results Inspired by it, spontaneous homing to tumor and M2-like macrophage polarization into M1-like ones are attained, which not only significantly magnify oxidative stress but also mitigate ITM including M2-like macrophage polarization and regulatory T cell decrease, and regulate death pathways.Conclusions All these actions accomplish a synergistic antitumor enhancement against tumor progression, thus paving a general route to mitigate ITM, activate immune responses, and magnify ferroptosis.