Microsystems & Nanoengineering (Jan 2022)

A metallic anti-biofouling surface with a hierarchical topography containing nanostructures on curved micro-riblets

  • Taekyung Kim,
  • Sunmok Kwon,
  • Jeehyeon Lee,
  • Joon Sang Lee,
  • Shinill Kang

DOI
https://doi.org/10.1038/s41378-021-00341-3
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Metallic surface finishes have been used in the anti-biofouling, but it is very difficult to produce surfaces with hierarchically ordered structures. In the present study, anti-biofouling metallic surfaces with nanostructures superimposed on curved micro-riblets were produced via top-down fabrication. According to the attachment theory, these surfaces feature few attachment points for organisms, the nanostructures prevent the attachment of bacteria and algal zoospores, while the micro-riblets prohibit the settlement of macrofoulers. Anodic oxidation was performed to induce superhydrophilicity. It forms a hydration layer on the surface, which physically blocks foulant adsorption along with the anti-biofouling topography. We characterized the surfaces via scanning electron and atomic force microscopy, contact-angle measurement, and wear-resistance testing. The contact angle of the hierarchical structures was less than 1°. Laboratory settlement assays verified that bacterial attachment was dramatically reduced by the nanostructures and/or the hydration layer, attributable to superhydrophilicity. The micro-riblets prohibited the settlement of macrofoulers. Over 77 days of static immersion in the sea during summer, the metallic surface showed significantly less biofouling compared to a surface painted with an anticorrosive coating.

Keywords