BMC Musculoskeletal Disorders (Dec 2017)

Analysis of bearing wear, whole blood and synovial fluid metal ion concentrations and histopathological findings in patients with failed ASR hip resurfacings

  • Lari Lehtovirta,
  • Aleksi Reito,
  • Jyrki Parkkinen,
  • Harry Hothi,
  • Johann Henckel,
  • Alister Hart,
  • Antti Eskelinen

DOI
https://doi.org/10.1186/s12891-017-1894-5
Journal volume & issue
Vol. 18, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Adverse Reaction to Metal Debris (ARMD) is still a major reason for revision surgeries in patients with metal-on-metal (MoM) hip replacements. ARMD consists of a wide range of alterations in periprosthetic tissues, most important of which are metallosis, inflammation, pseudotumors and necrosis. Studies investigating histopathological findings and their association to implant wear or indirect measures of wear have yielded inconsistent results. Therefore, we aimed to investigate bearing surface wear volume, whole blood and synovial fluid metal ion concentrations, histopathological findings in periprosthetic tissues and their associations. Methods Seventy-eight patients with 85 hips revised for ARMD were included in the study. Prior to revision surgery, all patients had whole blood chromium and cobalt ion levels assessed. In revision surgery, a synovial fluid sample was taken and analyzed for chromium and cobalt. Periprosthetic tissue samples were taken and analyzed for histopathological findings. Explanted implants were analyzed for bearing wear volume of both acetabular cup and femoral head components. Results Volumetric wear of the failed components was highly variable. The total wear volume of the head and cup had a strong correlation with whole blood chromium and cobalt ion concentrations (Cr: ρ = 0.80, p < 0.001 and Co: ρ = 0.84, p < 0.001) and a bit weaker correlation with fluid chromium and cobalt ion concentrations (Cr: ρ = 0.50, p < 0.01 and Co: ρ = 0.41, p = 0.027). Most tissues displayed only low-to-moderate amounts of macrophages and lymphocytes. Total wear volume correlated with macrophage sheet thickness (ρ = 0.25, p = 0.020) and necrosis (ρ = 0.35, p < 0.01). Whole blood chromium and cobalt ion concentrations had similar correlations. Lymphocyte cuff thickness did not correlate with either total wear volume or whole blood metal ion concentrations, but correlated with the grade of necrosis. Conclusions Bearing wear volume correlated with blood metal ion levels and the degree of necrosis and macrophage infiltration in periprosthetic tissues suggesting a dose-response relationship. Whole blood metal ion levels are a useful tool for clinician to estimate bearing wear and subsequent tissue response.

Keywords