Scientific Reports (Jun 2022)

Nanoscale plasmonic wires with maximal figure of merits as a superior flexible transparent conducting electrode for RGB colors

  • Chin-Chien Chung,
  • Dong-Sheng Su,
  • Tsung-Yu Huang,
  • Cheng-Yi Lee,
  • Robert Jan Visser,
  • B. Leo Kwak,
  • Hyunsung Bang,
  • Chung-Chia Chen,
  • Wan-Yu Lin,
  • Ta-Jen Yen

DOI
https://doi.org/10.1038/s41598-022-14756-z
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Based on incredibly increasing applications in modern optoelectronic devices, the demand for securing a superior conductive transparent electrode (TCE) candidate becomes significant and urgent. However, boosting both transmittance and conductance simultaneously is an intrinsic limitation. In this work, we present silver nanoscale plasmonic wires (Ag NPWs) to function as TCEs in the visible light region by lowering their corresponding plasma frequencies. By carefully designing geometric dimensions of the Ag NPWs, we also optimize the performance for red, green, and blue colors, respectively. The demonstrated figure of merits for RGB colors appeared respectively 443.29, 459.46, and 133.78 in simulation and 302.75, 344.11, and 348.02 in experiments. Evidently, our Ag NPWs offer much greater FoMs beyond conventional TCEs that are most frequently comprised of indium tin oxide and show further advantages of flexibility and less Moire effect for the applications of flexible and high-resolution optoelectronic devices.