Remote Sensing (Oct 2022)

A New Exospheric Temperature Model Based on CHAMP and GRACE Measurements

  • Xu Yang,
  • Xiaoqian Zhu,
  • Libin Weng,
  • Shenggao Yang

DOI
https://doi.org/10.3390/rs14205198
Journal volume & issue
Vol. 14, no. 20
p. 5198

Abstract

Read online

In this study, the effective exospheric temperature, derived from CHAMP and GRACE density measurements during 2002–2010, was utilized to develop a new exospheric temperature model (ETM) with the aid of the NRLMSIS 2.0 empirical model. We characterized the dominant modes of global exospheric temperature using the principal component analysis (PCA) method, and the first five derived empirical orthogonal functions (EOFs) captured 98.2% of the total variability. The obtained mean field, first five EOFs and the corresponding amplitudes were applied to build ETM using the polynomial method. The ETM and NRLMSIS 2.0 models were independently validated by the SWARM-C and GRACE Follow-On (GRACE-FO) density measurements. ETM can reproduce thermospheric density much better than the NRLMSIS 2.0 model, and the Root Mean Square Errors (RMSE) of ETM predictions were approximately 26.45% and 26.17% for the SWARM-C and GRACE-FO tests, respectively, while they were 39.52% and 44.41% for the NRLMSIS 2.0 model. In addition, ETM can accurately capture the equatorial thermospheric anomaly feature, seasonal variation and hemispheric asymmetry in the thermosphere.

Keywords