The Egyptian Journal of Radiology and Nuclear Medicine (Mar 2021)
Application of diffusion tensor imaging in Alzheimer’s disease: quantification of white matter microstructural changes
Abstract
Abstract Background Alzheimer’s disease (AD) is the most common cause of dementia in the aging population, responsible for 60–70% of all demented cases. Diffusion tensor imaging (DTI) is a very recent technique that allows the mapping of white matter (WM) microstructure changes in neurological disorders. The current study was conducted to compare DTI parameters between AD patients and healthy elderly subjects and to determine whether DTI can act as a potential biomarker for AD. Results There were significant differences in Modified Mini-Mental State Examination (MMMSE) and Clinical Dementia Rating (CDR) between the two groups. As regards the DTI parameters, significant differences were found between AD patients versus healthy subjects, in the mean diffusivity (MD) of the splenium [(1.05 ± 0.19) vs. (0.92 ± 0.22) , P=0.03], the MD of the right uncinate fasciculus [(0.92 ± 0.04) vs. (0.87 ± 0.05), P= 0.01], and MD of the right arcuate fasciculus (AF) [(0.83 ± 0.04) vs. (0.79 ± 0.04) P =0.01], as well as the MD of the right and left inferior fronto-occipital fasiculus (IFOF) [(0.89 ± 0.06) vs. (0.83 ± 0.04), P=0.01]. In addition, there were significant differences in the fractional anisotropy (FA) of the right and left cingulum between both groups [(0.45 ± 0.02) vs. (0.47 ± 0.03), P=0.01 and (0.45 ± 0.03) vs. 0.49± 0.04), P=0.01, respectively]. The overall accuracy of the aforementioned parameters ranged between 73 and 81% with the MD of the left cingulum revealing the highest accuracy. Conclusion DTI proofed to be a useful tool in differentiating AD patients from healthy subjects. In our study, we found that the splenium, cingulum, IFOF, and the right UF and right AF are the main tracts involved in AD. The left cingulum provided the highest accuracy in differentiating AD from normal subjects.
Keywords