Düzce Tıp Fakültesi Dergisi (Dec 2021)

Bilateral Superior Cervical Ganglionectomy and Melatonin Levels in Rat Subarachnoid Hemorrhage Model: Simple Precautions May Preserve Melatonin Levels

  • Güven Kılıç,
  • Murat Kayabaş,
  • Seçkin Emre Cancan

DOI
https://doi.org/10.18678/dtfd.1012828
Journal volume & issue
Vol. 23, no. 3
pp. 313 – 317

Abstract

Read online

Aim: Subarachnoid hemorrhage (SAH) is a serious disease, and it is thought that melatonin may have positive effects after SAH. Bilateral resection or blockage of superior cervical ganglions has constant effects on melatonin levels. Animal models with bilateral superior cervical ganglionectomy (SCG) show the role of superior cervical ganglion on melatonin and give clues about simple precautions which may help to prevent unfavorable outcomes in SAH patients. The aim of this study is to examine how melatonin levels change in SAH and SCG models. Material and Methods: Forty-two Sprague Dawley male rats weighing 200-250 g were used in the study and randomly divided into six groups. Arterial blood samples were collected 24 hours after the procedure in all groups. Serum melatonin levels of the groups were studied. Results: A significant difference in blood melatonin levels was observed between SAH and SCG groups, and against the control group. There was no significant difference between the melatonin levels in SCG group and SAH+SCG group (p=0.983). The mean blood melatonin level of the SAH group was higher than the SCG (p<0.001), SAH+SCG (p<0.001) and control groups (p=0.001). The mean blood melatonin levels of SAH+SCG and SCG groups were lower than the mean blood melatonin levels of the other groups and also the SAH group (p<0.001). Conclusion: Bilateral SCG significantly inhibited the abrupt increase of serum melatonin levels after SAH model in rats. Future studies aiming to address melatonin’s complex outcomes should take into account that minor exogenous factors may affect serum melatonin levels.

Keywords