Nanophotonics (Apr 2022)

Design automation of photonic resonator weights

  • Ferreira de Lima Thomas,
  • Doris Eli A.,
  • Bilodeau Simon,
  • Zhang Weipeng,
  • Jha Aashu,
  • Peng Hsuan-Tung,
  • Blow Eric C.,
  • Huang Chaoran,
  • Tait Alexander N.,
  • Shastri Bhavin J.,
  • Prucnal Paul R.

DOI
https://doi.org/10.1515/nanoph-2022-0049
Journal volume & issue
Vol. 11, no. 17
pp. 3805 – 3822

Abstract

Read online

Neuromorphic photonic processors based on resonator weight banks are an emerging candidate technology for enabling modern artificial intelligence (AI) in high speed analog systems. These purpose-built analog devices implement vector multiplications with the physics of resonator devices, offering efficiency, latency, and throughput advantages over equivalent electronic circuits. Along with these advantages, however, often come the difficult challenges of compensation for fabrication variations and environmental disturbances. In this paper, we review sources of variation and disturbances from our experiments, as well as mathematically define quantities that model them. Then, we introduce how the physics of resonators can be exploited to weight and sum multiwavelength signals. Finally, we outline automated design and control methodologies necessary to create practical, manufacturable, and high accuracy/precision resonator weight banks that can withstand operating conditions in the field. This represents a road map for unlocking the potential of resonator weight banks in practical deployment scenarios.

Keywords