Radiation Oncology (Jun 2023)
Impact of planning organ at risk volume margins and matching method on late gastrointestinal toxicity in moderately hypofractionated IMRT for locally advanced pancreatic ductal adenocarcinoma
Abstract
Abstract Background This study examined the differences in late gastrointestinal (GI) toxicities in moderately hypofractionated intensity-modulated radiation therapy (IMRT) for locally advanced pancreatic ductal adenocarcinoma (LA-PDAC) by changing the planning organs at risk volume (PRV) margin and the target matching method and assessed the causes of adverse events. Methods We examined 37 patients with LA-PDAC who underwent moderately hypofractionated IMRT between 2016 and 2020 at our institution; 23 patients were treated with wide PRV margins and soft tissue matching (Protocol A) and 14 with narrow PRV margins and fiducial marker matching (Protocol B). The GI toxicities, local control (LC) rate, and overall survival (OS) were assessed for each protocol. The initially planned and daily doses to the gross tumor volume (GTV), stomach, and duodenum, reproduced from cone-beam computed tomography, were evaluated. Results The late GI toxicity rate of grades 3–4 was higher in Protocol B (42.9%) than in Protocol A (4.3%). Although the 2-year LC rates were significantly higher in Protocol B (90.0%) than in Protocol A (33.3%), no significant difference was observed in OS rates. In the initial plan, no deviations were found for the stomach and duodenum from the dose constraints in either protocol. In contrast, daily dose evaluation for the stomach to duodenal bulb revealed that the frequency of deviation of V3 Gy per session was 44.8% in Protocol B, which was significantly higher than the 24.3% in Protocol A. Conclusions Reducing PRV margins with fiducial marker matching increased GI toxicities in exchange for improved LC. Daily dose analysis indicated the trade-off between the GTV dose coverage and the irradiated doses to the GI. This study showed that even with strict matching methods, the PRV margin could not be reduced safely because of GI inter-fractional error, which is expected to be resolved with online adaptive radiotherapy.
Keywords