Forum of Mathematics, Sigma (Jan 2019)

CATEGORIFYING RATIONALIZATION

  • CLARK BARWICK,
  • SAUL GLASMAN,
  • MARC HOYOIS,
  • DENIS NARDIN,
  • JAY SHAH

DOI
https://doi.org/10.1017/fms.2019.26
Journal volume & issue
Vol. 7

Abstract

Read online

We construct, for any set of primes $S$, a triangulated category (in fact a stable $\infty$-category) whose Grothendieck group is $S^{-1}\mathbf{Z}$. More generally, for any exact $\infty$-category $E$, we construct an exact $\infty$-category $S^{-1}E$ of equivariant sheaves on the Cantor space with respect to an action of a dense subgroup of the circle. We show that this $\infty$-category is precisely the result of categorifying division by the primes in $S$. In particular, $K_{n}(S^{-1}E)\cong S^{-1}K_{n}(E)$.

Keywords