Electronic Journal of Differential Equations (Jan 1997)

Sub-elliptic boundary value problems for quasilinear elliptic operators

  • Dian K. Palagachev,
  • Peter R. Popivanov

Journal volume & issue
Vol. 1997, no. 01
pp. 1 – 12

Abstract

Read online

$C^{2+alpha}(overline{Omega})$ is proved for the oblique derivative problem $$cases{ a^{ij}(x)D_{ij}u + b(x,,u,,Du)=0 & in $Omega$,cr partial u/partial ell =varphi(x) & on $partial Omega$cr} $$ in the case when the vector field $ell(x)=(ell^1(x),ldots,ell^n(x))$ is tangential to the boundary $partial Omega$ at the points of some non-empty set $Ssubsetpartial Omega$, and the nonlinear term $b(x,,u,,Du)$ grows quadratically with respect to the gradient $Du$.

Keywords