IEEE Access (Jan 2021)

Teaching Learning-Based Optimization With Evolutionary Binarization Schemes for Tackling Feature Selection Problems

  • Thaer Thaher,
  • Majdi Mafarja,
  • Hamza Turabieh,
  • Pedro A. Castillo,
  • Hossam Faris,
  • Ibrahim Aljarah

DOI
https://doi.org/10.1109/ACCESS.2021.3064799
Journal volume & issue
Vol. 9
pp. 41082 – 41103

Abstract

Read online

Machine learning techniques heavily rely on available training data in a data set. Certain features in the data can interfere with the learning process, so it is required to remove irrelevant and redundant features to build a robust training model. As such, several feature selection techniques are usually applied in a pre-processing phase to obtain the most appropriate set of features and improve the overall learning process. In this paper, a new feature selection approach is proposed based on a modified Teaching-Learning-based Optimization (TLBO) combined with four new binarization methods: the Elitist, the Elitist Roulette, the Elitist Tournament, and the Rank-based method. The influence of these binarization methods is studied and compared to other state-of-the-art techniques. The experimental results such as Shapiro-Wilk normality and Wilcoxon ranksum test show that both transfer functions and binarization approaches have a significant influence on the effectiveness of the binary TLBO. The experiments show that choosing a fitting transfer function along with a suitable binarization method has a substantial impact on the exploratory and exploitative potentials of the feature selection technique.

Keywords