Diagnostics (Feb 2021)
End-to-End, Pixel-Wise Vessel-Specific Coronary and Aortic Calcium Detection and Scoring Using Deep Learning
Abstract
Conventional scoring and identification methods for coronary artery calcium (CAC) and aortic calcium (AC) result in information loss from the original image and can be time-consuming. In this study, we sought to demonstrate an end-to-end deep learning model as an alternative to the conventional methods. Scans of 377 patients with no history of coronary artery disease (CAD) were obtained and annotated. A deep learning model was trained, tested and validated in a 60:20:20 split. Within the cohort, mean age was 64.2 ± 9.8 years, and 33% were female. Left anterior descending, right coronary artery, left circumflex, triple vessel, and aortic calcifications were present in 74.87%, 55.82%, 57.41%, 46.03%, and 85.41% of patients respectively. An overall Dice score of 0.952 (interquartile range 0.921, 0.981) was achieved. Stratified by subgroups, there was no difference between male (0.948, interquartile range 0.920, 0.981) and female (0.965, interquartile range 0.933, 0.980) patients (p = 0.350), or, between age p = 0.742). There was good correlation and agreement for CAC prediction (rho = 0.876, p p = 0.100). AC correlated well (rho = 0.947, p p = 0.070). Automated segmentation took approximately 4 s per patient. Taken together, the deep-end learning model was able to robustly identify vessel-specific CAC and AC with high accuracy, and predict Agatston scores that correlated well with manual annotation, facilitating application into areas of research and clinical importance.
Keywords