Applied Sciences (Apr 2020)

Electronic Emulator of Biological Tissue as an Electrical Load during Electroporation

  • Eva Pirc,
  • Bertrand Balosetti,
  • Damijan Miklavčič,
  • Matej Reberšek

DOI
https://doi.org/10.3390/app10093103
Journal volume & issue
Vol. 10, no. 9
p. 3103

Abstract

Read online

Electroporation is an emerging technology, with great potential in many different medical and biotechnological applications, food engineering and biomass processing. Large variations of biological load characteristics, however, represent a great challenge in electroporator design, which results in different solutions. Because a clinical electroporator is a medical device, it must comply with medical device regulative and standards. However, none of the existing standards directly address the operation or electroporator’s performance requirements. In order to evaluate clinical, laboratory and prototype electroporation devices during the development process, or to evaluate their final performance considering at least from the perspective of output pulse parameters, we present a case study on the design of an electronic emulator of biological tissue as an electrical load during electroporation. The proposed electronic load emulator is a proof of concept, which enables constant and sustainable testing and unbiased comparison of different electroporators’ operations. We developed an analog electrical circuit that has equivalent impedance to the beef liver tissue in combination with needle electrodes, during high voltage pulse delivery and/or electroporation. Current and voltage measurements during electroporation of beef liver tissue ex vivo, were analyzed and parametrized to define the analog circuit equation. An equivalent circuit was simulated, built and validated. The proposed concept of an electronic load emulator can be used for “classical” electroporator (i.e., not nanosecond) performance evaluation and comparison of their operation. Additionally, it facilitates standard implementation regarding the testing protocol and enables quality assurance.

Keywords