Geologia Croatica (Feb 2017)

Early Eocene evolution of carbonate depositional environments recorded in the Čikola Canyon (North Dalmatian Foreland Basin, Croatia)

  • Jelena Španiček,
  • Vlasta Ćosović,
  • Ervin Mrinjek,
  • Igor Vlahović

DOI
https://doi.org/10.4154/gc.2017.05
Journal volume & issue
Vol. 70, no. 1
pp. 11 – 25

Abstract

Read online

The stratigraphic succession in the Čikola Canyon (part of the North Dalmatian Foreland Basin) was studied in detail to describe both the sedimentological characteristics and fossil assemblages of the Lower Eocene deposits during the initial stage of the foreland basin formation. The North Dalmatian Basin now represents a part of the Outer Dinarides, and was developed in front of the evolving Dinaric structures by tectonic deformation and marine transgression of an emerged and denuded Mesozoic Adriatic Carbonate Platform (AdCP). During the initial phase, a distal ramp of a foreland basin was formed, characterised by carbonate sedimentation, lasting until the Middle Eocene. In a studied section more than 300 m thick, porcelaneous foraminifera, Alveolina, Orbitolitesand complex miliolids (Idalina, Periloculina) prevail, associated with conical agglutinated forms, nummulitids and red algae. These samples belong to the SBZ 11–12 (Ypresian), according to occurrences of Alveolina decastroi, Alveolina cremae, Alveolina multicanalifera and Coskinolina liburnica. Two main lithological units have been described: 1) mudstones to wackestones with sporadic occurrences of ostracods and charophyceae, deposited in restricted lagoonalsettings with several episodes of freshwater influences, and 2) foraminiferal packstones to grainstones with complex miliolids, alveolinids, corallinacean algae and nummulitids, deposited within inner and middle ramp settings. Palaeogene deposition of ramp carbonates in the Outer Dinarides area was mainly controlled by the continuous compressional tectonics, and the deposits today appear in more or less discontinuous outcrops. Palaeogene transgression occurred at different times over various parts of the former carbonate platform area, and subsequent carbonate sedimentation was characterised by deposition in similar environments during different time intervals over spatially restricted carbonate ramps controlled by synsedimentary tectonics.

Keywords