Applied Sciences (Aug 2024)
Innovative Energy Sustainable Solutions for Urban Infrastructure: Implementing Micro-Pumped Hydro Storage in Singapore’s Multi-Level Carparks
Abstract
As part of the initiative to achieve Singapore’s Green Plan 2030, we propose to investigate the potential of utilizing micro-pumped hydroelectric energy storage (PHES) systems in multi-level carparks (MLCP: a stacked car park that has multiple levels, may be enclosed, and can be an independent building) as a more environmentally friendly alternative to traditional battery storage for a surplus of solar energy. This study focuses on an MLCP with a surface area of 3311 m2 and a height of 12 m, considering design constraints such as a floor load capacity of 5 kN/m2 and the requirement for a consistent energy discharge over a 12 h period. The research identifies a Turgo turbine as the optimal choice, providing a power output of 2.9 kW at a flow rate of 0.03 m3/s with an efficiency of 85%. This system, capable of storing 1655.5 m3 of water, can supply power to 289 light bulbs (each consuming 10 W) for 15.3 h, thus having the capacity to support up to three MLCPs. These results underscore the environmental advantages of PHES over conventional batteries, highlighting its potential for integration with solar panels to decrease carbon emissions. This approach not only aligns with Singapore’s green initiatives but also promotes the development of a more sustainable energy infrastructure.
Keywords