International Journal of Mathematics and Mathematical Sciences (Jan 2011)

On Simultaneous Farthest Points in 𝐿∞(𝐼,𝑋)

  • Sh. Al-Sharif,
  • M. Rawashdeh

DOI
https://doi.org/10.1155/2011/890598
Journal volume & issue
Vol. 2011

Abstract

Read online

Let 𝑋 be a Banach space and let 𝐺 be a closed bounded subset of 𝑋. For (π‘₯1,π‘₯2,…,π‘₯π‘š)βˆˆπ‘‹π‘š, we set 𝜌(π‘₯1,π‘₯2,…,π‘₯π‘š,𝐺)=sup{max1β‰€π‘–β‰€π‘šβ€–π‘₯π‘–βˆ’π‘¦β€–βˆΆπ‘¦βˆˆπΊ}. The set 𝐺 is called simultaneously remotal if, for any (π‘₯1,π‘₯2,…,π‘₯π‘š)βˆˆπ‘‹π‘š, there exists π‘”βˆˆπΊ such that 𝜌(π‘₯1,π‘₯2,…,π‘₯π‘š,𝐺)=max1β‰€π‘–β‰€π‘šβ€–π‘₯π‘–βˆ’π‘”β€–. In this paper, we show that if 𝐺 is separable simultaneously remotal in 𝑋, then the set of ∞-Bochner integrable functions, 𝐿∞(𝐼,𝐺), is simultaneously remotal in 𝐿∞(𝐼,𝑋). Some other results are presented.