Beni-Suef University Journal of Basic and Applied Sciences (Aug 2022)

Development of curcumin-loaded liposomes in lysine–collagen hydrogel for surgical wound healing

  • Ibilola Mary Cardoso-Daodu,
  • Margaret Okonawan Ilomuanya,
  • Chukwuemeka Paul Azubuike

DOI
https://doi.org/10.1186/s43088-022-00284-2
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background A surgical wound is an incision made by a surgeon. Slow surgical wound healing may lead to chronic wounds which may be a potential health problem. The aim of this study is to formulate curcumin-loaded liposomes in lysine–collagen hydrogel for enhancing surgical wound healing. Curcumin-loaded liposomes were prepared using thin-film hydration method. The liposomal formulation was characterized by analysing its size, morphology, encapsulation efficiency, and in vitro release. The hydrogel base was prepared, and then, curcumin-loaded liposomes were infused to give formulation (F1). Curcumin-loaded liposomes were infused into the hydrogel base after which lysine and collagen were incorporated to give (F2), while (F3) comprised lysine and collagen incorporated in hydrogel base. All formulations were characterized by evaluation of the safety, stability, swelling index, pH, rheological properties, and in vivo wound healing assay. Histology and histomorphometry of tissue samples of wound area treated with formulations F1, F2, and F3 and the control, respectively, were examined. Results Curcumin-loaded liposomes were 5–10 µm in size, and the values for encapsulation efficiency and flux of the loaded liposomes are 99.934% and 51.229 µg/cm2/h, respectively. Formulations F1, F2, and F3 had a pH of 5.8. F1 had the highest viscosity, while F2 had the highest swelling index indications for efficient sustained release of drug from the formulation. The in vivo wound healing evaluation showed that curcumin-loaded liposomes in lysine–collagen hydrogel had the highest percentage wound contraction at 79.25% by day three post-surgical operation. Histological evaluation reflected a normal physiological structure of the layers of the epidermis and dermis after surgical wound healing in tissue samples from wound areas treated with formulations F1 and F2. The histomorphometrical values show highest percentage of collagen, lowest inflammatory rates, highest presence of microvessels, and re-epithelization rates at wound site in wounds treated with formulation F2 (curcumin-loaded liposomes in lysine–collagen hydrogel). Conclusion Curcumin-loaded liposomes in lysine–collagen hydrogel was found to be the most effective of the three formulations in promoting wound healing. Hence, this formulation can serve as a prototype for further development and has great potential as a smart wound dressing for the treatment of surgical wounds.

Keywords