BMC Genomics (Sep 2008)

Predicting protein disorder by analyzing amino acid sequence

  • Yang Mary,
  • Yang Jack Y

DOI
https://doi.org/10.1186/1471-2164-9-S2-S8
Journal volume & issue
Vol. 9, no. Suppl 2
p. S8

Abstract

Read online

Abstract Background Many protein regions and some entire proteins have no definite tertiary structure, presenting instead as dynamic, disorder ensembles under different physiochemical circumstances. These proteins and regions are known as Intrinsically Unstructured Proteins (IUP). IUP have been associated with a wide range of protein functions, along with roles in diseases characterized by protein misfolding and aggregation. Results Identifying IUP is important task in structural and functional genomics. We exact useful features from sequences and develop machine learning algorithms for the above task. We compare our IUP predictor with PONDRs (mainly neural-network-based predictors), disEMBL (also based on neural networks) and Globplot (based on disorder propensity). Conclusion We find that augmenting features derived from physiochemical properties of amino acids (such as hydrophobicity, complexity etc.) and using ensemble method proved beneficial. The IUP predictor is a viable alternative software tool for identifying IUP protein regions and proteins.