Water (Apr 2020)

Impacts of Hydrological Processes on Stream Temperature in a Cold Region Watershed Based on the SWAT Equilibrium Temperature Model

  • Xinzhong Du,
  • Greg Goss,
  • Monireh Faramarzi

DOI
https://doi.org/10.3390/w12041112
Journal volume & issue
Vol. 12, no. 4
p. 1112

Abstract

Read online

Variance in stream temperature from historical norms, which reflects the impacts from both hydrological and meteorological factors, is a significant indicator of the stream ecosystem health. Therefore, it is imperative to study the hydrological processes controlling stream temperature in the watershed. The impacts of hydrological processes on stream temperature in the cold region of Western Canada were investigated based on the previously developed Soil and Water Assessment Tool (SWAT) equilibrium temperature model. The model was calibrated and validated for streamflow and stream temperature based on the observations and a global parameter sensitivity analysis conducted to identify the most important hydrological process governing the stream temperature dynamics. The precipitation and air temperature lapse rates were found to be the most sensitive parameters controlling the stream temperature, followed by the parameters regulating the processes of soil water dynamics, surface runoff, and channel routing. Our analysis showed an inverse relationship between streamflow volume and stream temperature, and different runoff components have different impacts on temporal regimes of stream temperatures. This study elaborates on the response of the stream temperature to changes in hydrological processes at the watershed scale and indicates that hydrological processes should be taken into account for prediction of stream temperatures.

Keywords