Journal of the Saudi Society of Agricultural Sciences (Oct 2023)

Resistance induction in Brassica napus L. against water deficit stress through application of biochar and plant growth promoting rhizobacteria

  • Gul-Lalay,
  • Sami Ullah,
  • Muhammad Nafees,
  • Iftikhar Ahmed

Journal volume & issue
Vol. 22, no. 7
pp. 420 – 429

Abstract

Read online

Global warming have become a stress condition due to the generation of greenhouse gases from the burning of fossil fuels and deforestation with the industrial revolution. Climate change induces biotic and abiotic stress conditions which badly disturb the yield of crops with leading to the biochemical and physiological damages to plants. Therefore; this study investigated the capability of Morus alba L. wood biochar and plant growth promoting rhizobacteria PG1 (Pseudomonas sp.) and PG2 (Staphylococcus haemolyticus) to alleviate the drought condition in Brassica napus L. plant. In the current research work, the combined application of plant growth promoting rhizobacteria (PGPRs) and biochar triggered an enhancement in physicochemical properties of soil including %field capacity, water use efficiency, germination parameters including Timson germination index, final emergence percentage, mean germination time, final germination percentage, germination energy, mean emergence time, germination rate index and vegetative parameters including seed vigor indexes (SVI-I & SVI-II) and plant height stress index. Inoculation and co-inoculation of PGPRs and biochar positively promote the canola plant growth even under induce drought stress condition. A positive increase in B. napus biomass including leaf area, plant height and root growth and its dry and fresh mass at p < 0.05 level, which support the effectiveness of this approach. Results also showed that Staphylococcus haemolyticus individually and in combination with biochar even under stress condition promote canola plant growth more than Pseudomonas sp. We concluded that under stressors, co-application of PGPRs and biochar could be an operative approach for enhancing plant productivity and its development.

Keywords